Program Staff

Dori Henderson Photo

Dori Henderson, Ph.D.

MnDRIVE Brain Conditions Program Manager
6-145 Jackson Hall
(612) 626-2321

Karen Ellis

Deep Brain Stimulation Clinical Program Coordinator
Department of Neurology
Kelly Ryberg

Kelly Ryberg, M.A., CCRP

Research Coordinator - Deep Brain Stimulation Clinical Trials
Department of Neurology
(612) 626-3439
Julie Madsen

Julie Madsen

Regulatory Specialist, Deep Brain Stimulation Clinical Trials
12-149 Phillips-Wangensteen Building
(612) 626-3525
Mo Chen photo

Mo Chen, Ph.D.

Scientist & Manager, MnDRIVE Non-invasive Neuromodulation Laboratory
Room 247, 717 Delaware St. SE
(612) 624-5220
Alana Lieske

Alana Lieske

Research Professional 1, MnDRIVE Non-invasive Neuromodulation Laboratory
Room 348, 717 Delaware St. SE
(612) 301-2460
Erin photo

Erin Larson, Ph.D.

Associate Director, MnDRIVE Optogenetics Core Facility
3-432 McGuire Translational Research Facility (MTRF)
(612) 624-3075
caleb fick

Caleb Fick

Technician, MnDRIVE Optogenetics Core Facility
3-432 McGuire Translational Research Facility (MTRF)
(612) 624-3075



James Carey, Ph.D., P.T.

James Carey Photo
Neuromodulation Researcher, Professor — Physical Med & Rehabilitation
377 Ch R C
(612) 626-2746

Dr. Carey’s neuromodulation interests are in applying noninvasive transcranial magnetic stimulation (TMS) to people with stroke to improve the excitability of surviving motor neurons and thereby improve their recovery of hand movement.

Wei Chen, Ph.D.

Neuromodulation Researcher, Professor - Radiology/CMRR
1-211E CMRR
(612) 625-8814

Scott Cooper, M.D., Ph.D.

Scott Cooper Photp
MnDRIVE Neuromodulation Scholar, Assistant Professor — Department of Neurology
PWB 12-154
(612) 626-9516

I am a clinical neurologist specializing in movement disorders and a research physiologist specializing in control of voluntary movement. My long term goal is to combine the two roles fruitfully. I study pathophysiology of the extrapyramidal motor system with a particular focus on basal ganglia and Parkinson's disease and on deep brain stimulation. My research is with human subjects and I collaborate extensively with bioengineers, neurosurgeons, and neuropsychologists.

Emad Ebbini, Ph.D.

Emad Ebbini Photo
Neuromodulation Researcher, Professor — Electrical and Computer Engineering
(612) 625-1852

We are investigating image-guided transcranial application of focused ultrasound (tFUS) to neuromodulation. We have developed a unique paradigm for tFUS utilizing our dual-mode ultrasound array (DMUA) prototypes. DMUAs are capable of subtherapeutic or therapeutic of tFUS while providing real-time monitoring and localization of its interactions with brain tissue. Our DMUA prototypes have been shown to detect and localize both mechanical and thermal tFUS-tissue interactions with brain tissues in a rat model in vivo.

Stephen Engel, Ph.D.

Neuromodulation Researcher, Professor - Psychology
N218 Elliott Hall
(612) 625-5571

Dr. Engel's lab studies neuroplasticity in the human visual system. We use environmental manipulations, including augmented reality, to try to modulate function of the visual brain.

Geoffrey Ghose, Ph.D.

Geoffrey Ghose
Neuromodulation Researcher, Associate Professor, Departments of Neuroscience, Psychology, and Radiology
Center for Magnetic Resonance Research, CMRR, 2841A, 2021 6th Street SE, Minneapolis, MN 55455
(612) 625-8362

My lab studies the neurophysiological basis of cognitive factors such as attention and learning which are critical to behavioral performance. We employ neuromodulation and stimulation to understand, probe, and hopefully augment or mimic the effects of these factors. We use a variety of techniques including multi-electrode recordings, optical imaging, fMRI, computation, and psychophysics to characterize these factors, and their neural bases, in both behaving animals and humans. 

Bernadette Gillick, Ph.D., MSPT, P.T.

Bernadette Gillick
Neuromodulation Researcher, McKnight Land Grant Professor, Assistant Professor — Physical Med & Rehabilitation
Room 282 ChRB
(612) 626-3121

Research interests in cortical plasticity and recovery from neurologic insult in both adult and pediatric populations. Her research encompasses the use of different forms of non-invasive brain stimulation (transcranial magnetic stimulation and transcranial Direct Current stimulation), in combination with behavioral training, for improved motor function. Current Teaching Responsibilities include Research, Pediatric Rehabilitation, and Professional Behaviors in Academia.

Noam Harel, Ph.D.

Neuromodulation Researcher, Associate Professor, Radiology/CMRR
(612) 625-8399

My current research focuses on the development and integration of 7T MRI and high-field neuroimaging data into deep brain stimulation (DBS) surgical navigation in particular and brain surgery in general. We are developing new structural/anatomical imaging  which are combined with post processing image analysis schemes for the creation of a 3-dimensional anatomical  model of the brain. This 3D model created by the 7T images allows us to literally ‘see’ the individual shape, size and orientation of the brain target area for DBS therapy.

Luke Johnson, Ph.D.

Luke Johnson
MnDRIVE Neuromodulation Scholar, Assistant Professor, Neurology
121 Lions Research Building/McGuire Translational Research Facility
(612) 626-6157

Matthew D. Johnson, Ph.D.

Matthew Johnson photo
Neuromodulation Researcher, Assistant Professor — Biomedical Engineering
6-134 NHH

My group is primarily interested in developing and refining neural interface technologies to improve the quality of life for people with movement disorders. Deep brain stimulation (DBS) is one such technology, which over the past twenty years has helped numerous patients with Parkinson’s disease, dystonia, and essential tremor reclaim control over their motor function. The therapy involves placing small electrodes in regions of the brain that exhibit pathological activity, which contributes to the movement disorder, and then stimulating those regions with continuous pulses of electricity. My lab focuses on understanding how the brain responds and adapts to such stimulation-based therapies from a combination of computational and experimental perspectives. The knowledge gained from these studies in turn provides us with a framework to develop, evaluate, and translate new approaches for improving patient outcome.

Suhasa Kodandaramaiah, Ph.D.

Suhasa Kodandaramaiah
Neuromodulation Researcher, Mechanical Engineering
303 Mechanical Engineering, Minneapolis, MN 55455
(612) 626-1307

Suhasa Kodandaramaiah's research group is focused on engineering neurotechnologies that help better understand how computations that occur in the brain drive behavior. A critical challenge for modern neuroscience is to study neuronal computations across multiple spatial and temporal scales. Traditionally, technologies used to observe activities at one level do not scale to the next level without loss of signal fidelity or information. HIs laboratory is combining expertise in robotics, precision engineering, optics and microfabrication for engineering technologies that seek to bridge these experimental scales.  


Juergen Konczak, Ph.D.

Juergen Konczak photo
Neuromodulation Researcher, Professor — Kinesiology
400 Cooke Hall
(612) 624-4370

I am the head of a laboratory with a research focus on sensorimotor dysfunction in neurological diseases. We are actively engaged in developing new behavioral treatment options that can supplement or augment existing therapies. Currently we investigate how neuromodulation affects haptic perception in Parkinson's disease and how it changes voice quality for patients with a dystonic voice disorder called spasmodic dysphonia

Catherine Kotz, Ph.D.

Catherine Kotz
Neuromodulation Researcher, Associate Professor, Department of Integrative Biology/Physiology
CCRB 3-144, 2231 6th Street SE, Minneapolis, MN 55455
(612) 301-7687

We are using neuromodulation techniques to understand the role of the neurohormone orexin in energy balance. Our laboratory first developed the idea that orexin drives spontaneous physical activity (SPA) and non-exercise activity thermogenesis (NEAT); that it interacts with other neurotransmitters and brain sites in a network fashion; and that it has relevance to obesity: higher orexin signaling is associated with greater SPA and NEAT, the lean state and obesity resistance. Recently we have shown that orexin stimulation - either by direct receptor stimulation with orexin A injections in rats, or by DREADD [Designer Receptors Exclusively Activated by Designer Drugs] stimulation of orexin neurons in mice, prevents diet-induced adiposity and weight gain. This, coupled with our use of optogenetics to understand effects of acute simulation and inhibition of orexin neurons, and the recent development of the CAV2-Cre virus, which transfers Cre recombinase retrogradely between neurons, allows us to begin the study of orexin thermogenic pathways relevant to obesity.   

Esther Krook-Magnuson, Ph.D.

Esther Krook-Magnuson Photo
MnDRIVE Neuromodulation Scholar, Assistant Professor — Neuroscience
4-160 Jackson Hall
(612) 301-7747

Neuronal networks, diversity, and specificity of function are important to both physiological processes and neurological disorders, including epilepsy.  My laboratory seeks to improve our understanding of how cells interact within a network, how networks interact with each other, and the physiological roles of neuronal populations.  In this regard, key questions remain in epilepsy research, including what are the principal networks, conditions, and cell types involved in initiating, sustaining, propagating, terminating, and potentially suppressing, seizures.  By improving our understanding of these, we improve the prospects of someday reaching the goal of no seizures, no side effects, for all epilepsy patients.  My lab uses rodent models of neurological disorders, including temporal lobe epilepsy, and techniques including electrophysiology, optogenetics, immunocytochemistry, transgenic animals, and behavioral experiments to address these fundamental questions.

Vipin Kumar, Ph.D.

Vipin Kumar photo
Neuromodulation Researcher, Professor & Head — Computer Science and Eng
Room 4-192C KHKH
(612) 625-0726

Vipin Kumar is currently William Norris Professor and Head of the Computer Science and Engineering Department at the University of Minnesota. Kumar's current research interests include data mining, high-performance computing, and their applications in Neuroscience, Climate/Ecosystems and Biomedical domains. In the context of human neuroscience, the focus is on functional connectivity and its dynamics in healthy, disease, and post-treatment conditions. Functional connectivity analysis techniques developed in his group are highly suited for assessing the effectiveness of neuromodulation in treating mental disorders.

Mo Li, Ph.D.

Mo Li
Neuromodulation Researcher, Assistant Professor - Electrical and Computer Engineering
5-127 Keller Hall
(612) 625-4873

Hubert Lim, Ph.D.

Hubert Lim
Neuromodulation Researcher, Assistant Professor- Biomedical Engineering
6-132 Nils Hasselmo Hall
(612) 626-4565

Angus W. MacDonald, III, Ph.D.

N218 Elliott Hall
(612) 624-3813

My laboratory examines cognitive control, working memory and executive functioning and decision-making. We are using neuroimaging to decode brain regions involved in these processes, and transcranial stimulation to examine and promote plasticity in these processes. This work extends into psychopathology, such as understanding how brain stimulation can promote cognitive remediation in people with schizophrenia or predicting decisions related to addiction risk.

Karen A. Mesce, Ph.D.

Karen Mesce
Neuromodulation Researcher, Professor, Departments of Entomology and Neuroscience, Graduate Program in Neuroscience
219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN 55108

My laboratory is studying how the neuroactive substance, dopamine, influences identifiable neural circuits to choreograph specific locomotor programs, and impacts decision-making processes.  To address such issues, at the level of single neurons and their interconnections, we utilize experimentally-tractable invertebrate preparations.  Such systems have also proven beneficial for the testing of cutting-edge technologies for brain modulation.  Currently, we are designing, manufacturing, and testing novel micro devices for the dual recording of electrical and chemical signals.  We are also examining the cellular mechanisms underlying ultrasound neuromodulation.

Shalom Michaeli, Ph.D.

Shalom Michaeli photo
Neuromodulation Researcher, Associate Professor — Radiology - CMRR
2-122 CMRR Building
(612) 625-8397

The goal of my research is to utilize novel DBS paradigms based on the generation of rotating fields by amplitude and frequency modulated pulses, for efficient low energy modulation of thalamic – cortical pathways. The general objective is to optimize DBS pulse shapes to generate excitation of selective neuronal populations. The work on animal models is critical for the translation of more efficient and safer DBS strategies to humans. Development of novel efficient schemes which allow for flexible and selective excitability of cell’s and axonal populations is critical. The detection of network level activity leaded to a breakthrough development of resting state functional MRI (rsfMRI) methodologies. Our preliminary studies demonstrate that strikingly different functional connectivity outcomes can be robustly measured by fMRI in rest and activated conditions upon different DBS paradigms, thus substantiating the rationale for this project.

Gregory Molnar, Ph.D.

Gregory Molnar
Neuromodulation Researcher, Associate Professor, Department of Neurology
(612) 801-0307

Dr. Greg Molnar has 20 years of experience as a medical device innovator and expertise in neuromodulation research.  Dr. Molnar is an Associate Professor in the Department of Neurology at the University of Minnesota (UMN) and provides leadership to the clinical and preclinical research across the Deep Brain Stimulation (DBS) Research Program.  Greg is a Principal Investigator in the newly established UMN NIH Udall Center of Excellence for Parkinson's Disease and Co-Investigator on several other NIH and Industry grants. Dr. Molnar trained as a clinical neuroscientist at the University of Toronto, where his research focused on the mechanism of action of DBS and neuromodulation to treat chronic pain and movement disorders.  He also used several non-invasive neuromodulation techniques.

Ziad Nahas, M.D., MSCR

Ziad Nahas, MD
Neuromodulation Researcher, Professor and Vice Chair for Clinical Affairs - Psychiatry
(612) 273-9131

Dr Nahas scientific interests lie in translational research of mood dysregulation and depressive disorders. His unique expertise is in functional neuroimaging and brain stimulation across various modalities [Transcranial Magnetic Stimulation (TMS), Vagus Nerve Stimulation (VNS), Epidural prefrontal Cortical Stimulation (EpCS), Deep Brain Stimulation (DBS), Electroconvulsive Therapy (ECT) and Focally Electrically Administered Seizure Therapy (FEAST)]. He has also conducted basic research and collaborated on health economic studies. He received funding from various sources, notably the National Institute of Mental Health, National Alliance for Research in Schizophrenia and Depression (NARSAD) and the Hope for Depression Research Foundation (HDRF). 

Peggy Nelson, Ph.D., CCC-A

Peggy Nelson
Neuromodulation Researcher, Professor, Speech-Language-Hearing Sciences

In the Center for Applied and Translational Sensory Science (CATSS) lab, we are working on the development and refinement of sensory aids for sensory loss. Most of Dr. Nelson’s work is focused on auditory perception and device evaluation. Specifically, we believe that auditory sensory aids (hearing aids and cochlear implants) have progressed to the point where speech intelligibility is conveyed quite successfully, at least for understanding in quiet environments. We believe the next stage is improving the sound quality and ease of listening for users of these sensory aids.  Improving these abilities would ensure that the central auditory system has acclimated to the new inputs, and is processing them as natural acoustic information.  Visual and vestibular implants are in earlier stages of development, but show promise to improve sensory input to the brain to improve quality of life for millions of Americans.

John W. Osborn, Ph.D.

John Osborn, Jr, PhD
Neuromodulation Researcher, Professor, Director of Graduate Studies, Department of Integrative Biology and Physiology
(612) 624-3074

Our laboratory studies the role of the autonomic nervous system​ in the​ pathogenesis of cardiovascular and metabolic diseases with an emphasis on hypertension. We are particularly interested in how nerves to (efferent sympathetic) and from (visceral afferent) the kidney regulate renal and cardiovascular function. At the present time we are developing novel approaches to modulate renal nerves, using optogenetic​s​.

Michael Park, M.D., Ph.D.

Michael Park Photo
MnDRIVE Neuromodulation Scholar, Assistant Professor — Department of Neurosurgery
Mayo D429-4
(612) 626-4706

Dr. Park will use his background in biology, medicine, and electrical engineering to work with other university departments, such as neurology and medical bioengineering, to create new devices that increase therapeutic options for patients with brain conditions. His research interests include: brain structure,  neuromodulation/deep brain stimulation, and medical device innovation. 

Giuseppe Pellizzer, Ph.D.

Giuseppe Pellizzer photo
Neuromodulation Researcher, Associate Professor — Minneapolis VA Hospital, Neuroscience
6-125 Jac H
(612) 725-2283

I am interested in the neural mechanisms associated with the processing of information that leads to the production of movements. For this purpose, we combine psychophysical and neurophysiological approaches. The current projects concern (1) how the brain deals with uncertainty during motor planning; (2) the decoding of brain signals for brain-machine interface applications.

David Redish, Ph.D.

David Redish photo
Neuromodulation Researcher, Professor — Neuroscience
4-142 MCB
(612) 626-3738

My main research objective is to use theory, neurophysiology, and computational modeling to understand how the brain drives behavior. My lab combines multi-electrode neural ensemble recordings from awake, behaving animals with complex computational analysis techniques that enable measurement of neural dynamics at very fast time scales (e.g. msec).   Furthering the understanding of the neural mechanisms that underlie decision-making allows us to modulate those decision-making processes, behaviorally as well as neurally.

Patrick Rothwell, Ph.D.

Patrick Rothwell
MnDRIVE Neuromodulation Scholar, Assistant Professor - Department of Neuroscience
4-142 WMBB
(612) 626-8744

Brain disorders and mental illness represent a tremendous social and economic burden, with few effective treatments. The goal of our research is to identify the causes of brain conditions, and develop interventions to restore healthy function using synaptic plasticity and neuromodulation. We study the striatum, and important brain region for both simple and complex movements and cognitive functions. We examine the function of neural circuits formed by striatal synapses that connect specific sources and targets. Our multidisciplinary approach includes quantitative analysis of gene expression; genetic and molecular manipulations of neural circuits; measurement of synaptic function and plasticity using electrophysiology; and optogenetic stimulation of circuits in brain slices and behaving animals. Our current research focuses on autism spectrum disorders and drug addiction - two brain conditions that affect overlapping elements of striatal circuitry.

David Rottenberg, M.D.

David Rottenberg photo
Neuromodulation Researcher, Professor — Neurology
Bx 295 Mayo

I came late to neuromodulation, having been trained as a neuro-oncologist with research interests in quantitative neuroimaging and computational anatomy.  With the advent of deep brain stimulation (DBS) for the treatment of movement disorders in the 1990's I recognized an opportunity to transfer my computer skills and computational interests to programming the implanted pulse generators used for DBS.  My clinical and research interests in DBS focus on the poorly-understood high-dimensional space created by the multiple parameters — active contacts, applied voltage, pulse width, constant current, and stimulation frequency — that are routinely selected to modulate DBS in individual patients.

Daniel Schmidt, Ph.D.

Daniel Schmidt, PhD
Neuromodulation Researcher, Assistant Professor, Department of Genetics, Cell Biology & Development
MCB 4-124, Minneapolis, MN 55455
(612) 625-1180

Our group invents and applies protein engineering technologies to study how cells sense, integrate and exchange information, how pathologic changes in these processes relate to health and disease, and provide insights into new therapies. We are developing novel optogenetic reagents that allow us to systematically perturb specific ion channels and signaling receptors in a time- and amplitude-variant manner. We combine these molecular reagents into an experimental framework in which all families of ion channels and receptors can be independently controlled, and their contribution to diverse cellular signal transduction circuits investigated.

Lauren E. Schrock, M.D.

MnDRIVE Neuromodulation Scholar, Assistant Professor - Department of Neurology
PWB 12 - 160
(612) 625-5317

Alena Talkachova, Ph.D.

Alena Talkachova
Neuromodulation Researcher, Associate Professor, Biomedical Engineering
6-128 Nils Hasselmo Hall
(612) 626-2719

We study the therapeutic effect and efficacy of vagal nerve stimulation (VNS) therapy in experimental in-vivo animal models, aiming to assess the effects of VNS therapy on the functional and electrophysiological properties of the heart. We continuously record in-vivo ECG and blood pressure to characterize the effect of VNS on heart rate, blood pressure and arrythmias. We also perform ex-vivo optical mapping experiments in the isolated whole heart that  allow us to study complex spatio-temporal organization of electrical activity encountered in the heart during normal and abnormal rhythms, and investigate the electrophysiological properties induced by VNS in both healthy and diseased hearts.

Mark Thomas, Ph.D.

Mark Thomas Photo
Neuromodulation Researcher, Professor - Neuroscience and Psychology
Room 6-145 JacH
(612) 624-4963

Paul Tuite, M.D.

Paul Tuite photo
Neuromodulation Researcher, Professor — Neurology
12-146 P W B
(612) 625-9662

As a founding member of the neuromodulation team when I arrived at the University of Minnesota in 1996 I am playing a crucial role in managing the medical aspects related to Parkinson's disease as well as partaking in the Deep Brain Stimulation (DBS) surgical program consensus meetings that help select appropriate individuals for DBS surgery. 

Kamil Ugurbil, Ph.D.

Kamil Ugurbil photo
Neuromodulation Researcher, Professor — Radiology-CMRR
102 CMRR
(612) 626-9591

Dr. Ugurbil is the director of the Center for Magnetic Resonance Research (CMRR) where he leads a multi-investigator and multi-disciplinary research effort focused on imaging brain anatomy, function, and connectivity with magnetic resonance (MR) techniques, particularly at ultrahigh (7 Tesla and above) magnetic fields. These techniques are increasingly important in evaluating numerous aspects of neuromodulation, such as defining circuits involved, targets for neuromodulation, consequences of neuromodulation, etc.

Sophia Vinogradov, M.D.

Sophia Vinogradov
Neuromodulation Researcher, Professor, Head, Department of Psychiatry
(612) 273-9820

Dr. Sophia Vinogradov studies the behavioral and neuroplastic effects of cognitive training on executive functioning, social cognition, and sensory processing in people with schizophrenia and other psychotic illnesses. She has begun to study how neuromodulation approaches can enhance the effects of cognitive training and increase the durability of training effects. Dr. Vinogradov is a co-investigator on a study of tDCS combined training targeting working memory and sensory processing, examining the impact on symptoms, cognition, and EEG function in individuals with schizophrenia. She is also beginning pilot work examining the effects of rTMS cognition delivered to medial prefrontal cortex plus training targeting social cognition on anhedonia and amotivation in psychosis.

Jerrold L. Vitek, M.D., Ph.D.

Jerrold Vitek Photo
Neuromodulation Researcher, Professor & Head — Neurology Department, MnDRIVE Steering Committee Member
12-100 PWB
(612) 624-1903

Dr. Vitek directs a large interdisciplinary neuromodulation research program primarily centered on understanding the pathophysiology of movement disorders such as Parkinson's disease and dystonia as well as the mechanisms underlying the therapeutic effect of deep brain stimulation. Dr. Vitek serves as the principal investigator for both pre-clinical laboratory studies using animal models and clinical studies on human subjects/patients. Much of his work focuses on the ultimate translation of basic laboratory research discoveries into clinical treatment options for affected patients in order to reduce symptoms, minimize side effects and enhance function and quality of life. Dr. Vitek forms key collaborations with other experts in neurology as well as other disciplines such as neurosurgery, neuroscience, biomedical science, and radiology in addition to the medical industry to expedite and enhance new discoveries and their meaningful translation from “bench to bedside.

Alik Widge, Ph.D.

Alik Widge
MnDRIVE Neuromodulation Scholar, Assistant Professor — Psychiatry
3-208 MTRF
(612) 625-7594

Zhi Yang, Ph.D

zhi yang
Neuromodulation Researcher, Assistant Professor, Biomedical Engineering

Zhi Yang is an Assistant Professor at the Department of Biomedical Engineering at the University of Minnesota. He is the PI of the NeuroElectronics Lab, working on new stimulation, recording, and signal processing device that can enable high channel counts and closed-loop neuromodulation in the brain and in peripheral/autonomic nerves.

Neuromodulation Fellows

Elizabeth Annoni

Elizabeth Annoni
Graduate Fellow

Department:  Biomedical Engineering
Mentor: Alena Talkachova, PhD
Project Title:  Evaluating the efficacy of vagus nerve stimulation to treat hypertension and hypertension induced heart disease

Traditionally, neuromodulation focused on treating the brain; however recently it has expanded towards treating diseases associated with sympatho-vagal imbalance.  This research investigates a novel application of vagus nerve stimulation (VNS) to treat hypertension by restoring autonomic balance.

Daniel Chantigian

Discoveries through Industry Partnerships Fellow

Department:  Rehabilitation Medicine

Mentor: Manda Keller-Ross, Rehabilitation Medicine

Industry Partner: Boston Scientific

Project Title: Effect of Spinal Cord Stimulation on Lowering Blood Pressure during Exercise in Adults with Hypertension

Heart disease is the leading cause of death worldwide. High blood pressure affects a billion adults and is a risk factor for heart disease. Blood pressure is controlled only in half of these adults via medications and lifestyle changes. Epidural spinal cord stimulation is used clinically to relieve pain and, because of how it works, has high potential to lower blood pressure, which would reduce the risk of heart disease and improve quality of life for adults with high blood pressure.

Adam Choe

Adam Choe
Discoveries through Industry Partnerships Fellow

Department:  Medical Devices Center
Mentor:  Joseph Hale, PhD   Medical Devices Center
Industry Partner:  Pediatric Device Innovation Consortium and New Lion Labs
Project title:  Noninvasive Neuromodulation Anxiety Reduction (NNAR) System Aims to Increase Quality Patient Outcomes While Decreasing Sedation and Anesthesia in Children (Patients of Rapid Brain Development).

The NNAR System will lead to improved clinical experiences and outcomes for children undergoing dental procedures by reducing the need for physical and/or chemical restraints in order to provide optimal dental care, all while protecting rapid brain development. Despite growing concern with the use of sedation/anesthesia in pediatric patients, dental provider survey results demonstrate continued upward trend on the use of anesthetics for children in this setting.

David Nedrud

David Nedrud
Graduate Fellow

Department:  Genetics, Cell Biology & Development

Mentor: Daniel Schmidt, PhD
Project Title:   Engineering optogenetic reagents for precise modulation of endogenous ion channels

We develop optogenetic tools that allow us to study how cell-type specific changes in specific ion channels alter higher brain functions.  Understanding these processes is critical for identifying points of intervention for new kinds of neuromodulation therapies

Sam Nemanich, Ph.D.

sam nemanich
Postdoctoral Fellow

Department:  Rehabilitation Medicine

Mentor:  Bernadette Gillick, PhD

Project Title:  Effects of transcranial direct current stimulation and bimanual training on motor learning and motor cortex connectivity in children with cerebral palsy

Dr. Nemanich’s combined non-invasive brain stimulation and rehabilitation intervention research has the promise to improve lifetime movement function and quality of life for children with cerebral palsy.

Morgan Newhoff

Morgan Newhoff
Graduate Fellow

Department:  Entomology

Mentor: Karen Mesce, PhD
Project Title:  An Investigation into the Cellular Mechanisms Underlying Ultrasonic Neuromodulation         

Ms. Newhoff’s research will improve the efficacy and understanding of how ultrasound affects neuronal activity, thereby increasing the therapeutic use of ultrasonic neuromodulation to treat neurological disorders including epilepsy, Parkinson’s disease, and chronic pain non-invasively

Marc Pisansky, Ph.D.

Marc Pisansky
Postdoctoral Fellow

Department:  Neuroscience

Mentor: Patrick Rothwell, PhD
Project Title:  The neural substrates of impulsivity in opioid addiction; optogenetic imaging and modulation of interneurons in the mouse nucleus accumbens

Dr. Pisansky’s pre-clinical research aims to understand the brain systems and cognitive processes that are impaired by opioid exposure and lead to abuse and addiction

Ian Ramsay, Ph.D.

Ian Ramsay, PhD
Discoveries through Industry Partnerships Fellow

Department:  Psychiatry

Mentor:  Joseph Hale, PhD

Industry Partner:  Posit Science Corporation

Project Title:  Can tDCS accelerate and sustain the cognitive benefits of auditory training in schizophrenia?

Cognitive deficits in schizophrenia are broad and pervasive, and account for poor long-term outcomes.  Computerized cognitive training has shown promise for improving cognition in schizophrenia, but its efficacy remains limited.  The current proposal seeks to combine transcranial direct current stimulation (tDCS) with Cognitive training to accelerate and enhance the cognitive benefits of this intervention.

*Dr. Ramsay’s fellowship is funded by both the Frederick B. Wells Trust and MnDRIVE Brain Conditions

Martha Streng, Ph.D.

Martha Streng
Postdoctoral Fellow

Department:  Neuroscience

Mentor:  Esther Krook-Magnuson, PhD
Project Title:  Modulation of cerebellar output channels in temporal lobe epilepsy

This postdoctoral fellowship will lead to improved understanding of the cerebellar contribution to seizure cessation as well as potential targets for treatment of temporal lobe epilepsy.


Michelle Thai

michelle thai
Graduate Fellow

Department:  Psychology

Mentor: Karen Cullen, MD
Project Title:  Cognitive and Neural Correlates of Symptom Reduction in Adolescent Depression Following Repetitive Transcranial Magnetic Stimulation

This project will lead to the development of novel treatments for adolescents with depression who are unresponsive to existing treatments.  This project will also determine whether reducing cognitive deficits contributes to symptom reduction



Ying Yu, Ph.D.

Ying yu
Postdoctoral Fellow

Department:  Neurology

Mentors:  Jerrold Vitek, MD, PhD and Greg Molnar, PhD
Project Title:   Selective modulation of neuronal activity in the thalamus by “field steering” DBS of the internal globus pallidus for treatment of Parkinson’s disease in a MPTP non-human primate model

This study will provide vital information of the effects of “field steering” DBS on motor signs of PD and clarify the role of discrete pathways from GPi to thalamus in their development.  These data will provide the rationale for alternative targets and a new understanding of mechanisms underlying DBS.